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Abstract

The construction of stable reduced order models using Galerkin projection for the Euler
or Navier-Stokes equations requires a suitable choice for the inner product. The standard
L2 inner product is expected to produce unstable ROMs. For the non-linear Navier-Stokes
equations this means the use of an energy inner product. In this report, Galerkin projection
for the non-linear Navier-Stokes equations using the L2 inner product is implemented as a
first step toward constructing stable ROMs for this set of physics.
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Chapter 1

Introduction

The proper orthogonal decomposition (POD) can be used to construct reduced order
models (ROMs) for the Euler and Navier-Stokes equations. Discussed in detail in Lumley
[7] and Holmes et al. [4], POD is a mathematical procedure that, given an ensemble of data
and an inner product, constructs a basis for that ensemble that is optimal in the sense that
it describes more energy (on average) of the ensemble in the chosen inner product than any
other linear basis of the same dimension M . Stable ROMs based on the Galerkin projection
of the fluid equations onto the POD modes requires specific definitions of the inner product
[1, 8]. ROMs based on the simple L2 inner product can be unstable [1]. For the non-linear
Navier-Stokes equations an energy inner product is required for stability [5]. Although the
L2 inner product is expected to produce an unstable ROM, it is a logical first step toward
developing a stable ROM for the non-linear Navier-Stokes equations.

The procedure for constructing a reduced order model using the POD method/Galerkin
projection is as follows:

1. Collect snapshots of the state of the flow field from unsteady simulations of the problem
of interest.

2. Perform singular value decomposition on these snapshots. The left eigenvectors are
the POD modes.

3. Approximate the flow variables as a weighted sum of the POD modes.

4. Project the Navier-Stokes equations onto the POD modes.

5. Perform the necessary integrations over the domain in order to construct the coefficient
matrices for the ROM.

6. Compute the ROM coefficients by integrating in time.
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Chapter 2

Galerkin Projection for the

Non-Linear Navier-Stokes Equations

The Navier-Stokes equations can be written in terms of density, velocity and temperature
[2] to produce the continuity equation

ρ,t + ρ,juj + ρuj,j = 0, (2.0.1)

three momentum equations

ρui,t + ρui,juj + R (ρT ),i − τij,j = 0, i = 1, 2, 3 (2.0.2)

and the energy equation

ρT,t + ρujT,j + (γ − 1)uj,jρT +
(γ − 1)

R
(−κT,j),j

−
(γ − 1)

R
ui,jτij = 0. (2.0.3)

These equations can be rewritten in non-dimensional form as

ρ,t + ρ,juj + ρuj,j = 0, (2.0.4)

ρui,t + ρui,juj +
1

γM2
ref

(ρT ),i −
1

Re
τij,j = 0, i = 1, 2, 3 (2.0.5)

and

ρT,t + ρujT,j + (γ − 1) uj,jρT +
( γ

PrRe

)

(−κT,j),j

−

(

γ (γ − 1) M2
ref

Re

)

ui,jτij = 0, (2.0.6)

for I = 1, ..., M , where all terms are non-dimensional and Mref = uref/cref , and M denotes
the size of the reduced POD basis.

A POD basis can be constructed using the method of snapshots. The Navier-Stokes
equations can then be projected onto the POD modes using the L2 inner product, resulting

9



in

〈(

ρui,t + ρui,juj +
1

γM2
ref

ρ,iT +
1

γM2
ref

ρT,i −
1

Re
τij,j

)

, φui

I

〉

+

〈(

ρT,t + ρujT,j + (γ − 1)uj,jρT +
( γ

PrRe

)

(−κT,j),j
−

(

γ (γ − 1)M2
ref

Re

)

ui,jτij

)

, φT
I

〉

+ 〈(ρ,t + ρ,juj + ρuj,j) , φρ
I〉 = 0, (2.0.7)

where 〈u, v〉 denotes the inner product.

The flow variables can then be approximated using the POD modes:

ρ ≈

M
∑

k=1

akφ
ρ
k, (2.0.8)

ui ≈
M
∑

k=1

akφ
ui

k , i = 1, 2, 3 (2.0.9)

and

T ≈
M
∑

k=1

akφ
T
k . (2.0.10)

These approximations can be inserted into the Galerkin projection to produce the following
terms:

〈ρ,t, φ
ρ
I〉 =

M
∑

k=1

ȧk 〈φ
ρ
k, φ

ρ
I〉 , (2.0.11)

〈ρui,t, φ
ui

I 〉 =
M
∑

k=1

M
∑

q=1

ȧkaq

〈

φρ
qφ

ui

k , φui

I

〉

, (2.0.12)

〈

ρT,t, φ
T
I

〉

=

M
∑

k=1

M
∑

q=1

ȧkaq

〈

φρ
qφ

T
k , φT

I

〉

, (2.0.13)

〈ρ,juj, φ
ρ
I〉 =

M
∑

k=1

M
∑

q=1

akaq

〈

φρ
k,jφ

uj

q , φρ
I

〉

, (2.0.14)

〈ρuj,j, φ
ρ
I〉 =

M
∑

k=1

M
∑

q=1

akaq

〈

φρ
kφ

uj

q,j, φ
ρ
I

〉

, (2.0.15)

〈ρ,iT, φui

I 〉 =

M
∑

q=1

M
∑

r=1

aqar

〈

φρ
q,jφ

T
r , φui

I

〉

, (2.0.16)

〈ρT,i, φ
ui

I 〉 =
M
∑

q=1

M
∑

r=1

aqar

〈

φρ
qφ

T
r,i, φ

ui

I

〉

, (2.0.17)
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〈

uk,jτkj, φ
T
I

〉

=

〈

M
∑

q=1

aqφ
uk

q,jτkj, φ
T
I

〉

, (2.0.18)

〈ρui,juj, φ
ui

I 〉 =
M
∑

k=1

M
∑

q=1

M
∑

r=1

akaqar

〈

φρ
qφ

ui

k,jφ
uj

r , φui

I

〉

, (2.0.19)

〈

ρujT,j, φ
T
I

〉

=
M
∑

k=1

M
∑

q=1

M
∑

r=1

akaqar

〈

φρ
qφ

uj

r φT
k,j, φ

T
I

〉

, (2.0.20)

〈

ρuj,jT, φT
I

〉

=

M
∑

k=1

M
∑

q=1

M
∑

r=1

akaqar

〈

φρ
qφ

uj

r,jφ
T
k , φT

I

〉

, (2.0.21)

for I = 1, ..., M . The following two terms are produced by performing integration by parts

〈τij,j, φ
ui

I 〉 =
〈

−τij , φ
ui

I,j

〉

, (2.0.22)

and

〈

(−T,j),j
, φT

I

〉

=
〈

T,j, φ
T
I,j

〉

=

〈

M
∑

k=1

akφ
T
k,j, φ

T
I,j

〉

=
M
∑

k=1

ak

〈

φT
k,j, φ

T
I,j

〉

, (2.0.23)

for I = 1, ..., M . Substituting these terms in 2.0.7 produces

M
∑

k=1

ȧk 〈φ
ρ
k, φ

ρ
I〉 +

M
∑

k=1

M
∑

q=1

ȧkaq

(〈

φρ
qφ

ui

k , φui

I

〉

+
〈

φρ
qφ

T
k , φT

I

〉)

=
γκ

PrRe

M
∑

k=1

ak

〈

φT
k,j, φ

T
I,j

〉

+
1

Re

〈

−τij , φ
ui

I,j

〉

+

(

γ (γ − 1)M2
ref

Re

)

〈

M
∑

q=1

aqφ
uk

q,jτkj, φ
T
I

〉

+
M
∑

k=1

M
∑

q=1

akaq

(

〈

φρ
k,jφ

uj

q , φρ
I

〉

+
〈

φρ
kφ

uj

q,j, φ
ρ
I

〉

+
1

γM2
ref

〈

φρ
k,jφ

T
q , φui

I

〉

+
1

γM2
ref

〈

φρ
kφ

T
q,i, φ

ui

I

〉

)

+

M
∑

k=1

M
∑

q=1

M
∑

r=1

akaqar

(〈

φρ
qφ

ui

k,jφ
uj
r , φui

I

〉

+
〈

φρ
qφ

uj
r φT

k,j, φ
T
I

〉

+ (γ − 1)
〈

φρ
qφ

uj

r,jφ
T
k , φT

I

〉)

, (2.0.24)

for I = 1, ..., M . Equation (2.0.24) can be rewritten in the form

[

Mik +

m
∑

q=1

Mikqaq

]

{ȧk} =

{

m
∑

k=1

Aikak +

m
∑

k=1

m
∑

q=1

Aikqakaq +

m
∑

k=1

m
∑

q=1

m
∑

r=1

Aikqrakaqar

}

.

(2.0.25)
The POD coefficients ak can be found by integrating this equation in time.
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Chapter 3

Implementation in SPIRIT and

MATLAB

This section describes the changes made to the code SPIRIT in order to apply the
POD/Galerkin method to the non-linear Navier-Stokes equations, and the MATLAB rou-
tines used to integrate the ROM system (2.0.25) forward in time. The SPIRIT code is
a parallel C++ code that uses distributed vector and matrix data structures and parallel
eigensolvers from the Trilinos project [3] and basis functions/quadrature routines from the
libmesh finite element library [6].

Integration Using Quadrature

The following functions were added to the file EpetraInterfaceTetMesh.C to perform the
integrations required by the projection onto the non-linear Navier-Stokes equations. These
functions use quadrature to accurately compute the integrals of up to cubic functions defined
in each element. The POD modes are defined at the nodes of the elements and are therefore
linear inside the elements. The gradients of the POD modes are defined inside the elements
and are therefore constant throughout the element volume.

IntegrateUsingQuadrature

There are three overloaded versions of this function. The different versions take in
one, two or three nodal functions and one element function. This allows the product
of up to three modes and one gradient to be integrated accurately using quadrature.
Inside this function, the product of the modes is integrated over each tetrahedron and
then summed to give the total integral over the domain. This function relies on the
definition of the quadrature weights computed by the function ComputeTetQuadra-
tureCoefficients.

AssembleIntegrand Quadrature

This function is similar to the function IntegrateUsingQuadrature in that there are
three versions to account for the varying number of nodal functions and that integration
is performed using quadrature. The primary difference is that this function computes
an integrand and stores it at the nodes. The summation over the domain is performed

13



outside this function. This function was created to be in the style of the previous
linearized implementations in SPIRIT and is meant as a replacement for the function
AssembleIntegrand. However, these functions are not used in the non-linear Navier-
Stokes equations (IntegrateUsingQuadrature is used instead).

ComputeTetQuadratureCoefficients

This function calls ComputeTetQuadratureCoefficients Linear, ComputeTetQuadra-
tureCoefficients Quadratic, ComputeTetQuadratureCoefficients Cubic for each element
in order to compute the tetrahedral quadrature coefficients.

ComputeTetQuadratureCoefficients Linear

This function computes the quadrature coefficients required to accurately integrate a
linear function in a tetrahedral volume. This function uses libmesh to compute the
quadrature weights.

ComputeTetQuadratureCoefficients Quadratic

This function computes the quadrature coefficients required to accurately integrate a
quadratic function in a tetrahedral volume. This function uses libmesh to compute the
quadrature weights.

ComputeTetQuadratureCoefficients Cubic

This function computes the quadrature coefficients required to accurately integrate a
cubic function in a tetrahedral volume. This function uses libmesh to compute the
quadrature weights.

Specifying Zero Base Flow

The implementations of the linearized Euler and Navier-Stokes compute a POD basis
for perturbations of the flow variables about some base flow. For the non-linear Navier-
Stokes equations the POD basis is computed for the actual full (mean plus fluctuation)
flow variables. This requires that the routines to read in the snapshots be modified so
that there is no base flow. Three overloaded functions are added to POD.C to accomplish
this: ComputePODBasis, LoadSnapshots, and LoadBaseFlow. There is also the function
SetBaseFlow in FluidEqns.C.

Galerkin Projection onto the Non-Linear Navier-Stokes

Equations

The actual Galerkin projection for the non-linear Navier-Stokes equations is carried out
by the function GalerkinProjectNonLinNSL2 QuadInt in FluidEqns.C. This function com-
putes the various terms in 2.0.24 and stores them in the form of the tensors in 2.0.25.

14



Time Integration of the ROM

The ROM coefficients are found by performing time integration using a fourth-order
Runge-Kutta (RK4) scheme in MATLAB. An existing RK4 script was modified for non-
linear equations.
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Chapter 4

Discussion of Results

The above implementation was run on the 2DViscPulseBox example in the SPIRIT repos-
itory. The objective of this run was to verify the new code.

Description of 2DViscPulseBox Problem

The test case considered is that of a 2D viscous acoustic pressure pulse in the following 2D
prismatic domain: Ω = (−1, 1)× (−1, 1) ∈ R

2. The base flow for this problem was uniform,
with the following values: p̄ = 1.01325 Pa, T̄ = 300 K, ρ̄ = p̄

RT
= 1.175784 × 10−5 kg/m3,

ū1 = ū2 = 0.0 m/s. The kinematic viscosity was set to a constant value: µ = 1.458 ×
10−4 Pa · s. This value of the viscosity corresponds to a Reynolds number of Re = 28 (based
on a reference speed of sound of cref = 347.1887 m/s2, a length scale of L = 1 m and a
reference velocity ρref = ρ̄).

The high-fidelity fluid simulation data from which the POD basis was constructed were
generated using a Sandia in-house finite volume flow solver known as SIGMA CFD. As both
the high-fidelity code as well as the ROM code are 3D codes, a 2D mesh of the domain Ω was
converted to a 3D mesh by extruding the 2D mesh in the z-direction by one element. The
computational grid for this test case was composed of 3362 nodes, cast into 9600 tetrahedral
finite elements within the ROM code. A no slip boundary condition was imposed on the
four sides of the domain in the x and y plane. To ensure the solution has no dynamics in
the z-direction, the following values of the z-velocity component was specified: u3 = 0 m/s2.
Symmetry boundary conditions were imposed for z = constant in the high-fidelity code. The
high-fidelity simulation was initialized with a pressure pulse in the middle of the domain,
and run until time 0.01 seconds. During this simulation, the initial pressure pulse reflected
from the walls of the domain a number of times. Snapshots from the high-fidelity simulation
were saved every 5 × 10−5 seconds, to yield a total of 200 snapshots. These snapshots
were employed to construct a 10 mode POD basis, orthonormal with respect to the L2
inner product. Both the high-fidelity simulation as well as the ROM simulation were run
in non-dimensional variables, with the velocities non-dimensionalized by cref , the density
non-dimensionalized by ρref and the pressure non-dimensionalized by pref = ρrefc

2
ref =

1.41729 Pa.
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Results

The accuracy of the ROM can be visualized in a number of ways.

First, the ROM coefficients are compared to the projections of the snapshots onto the
POD basis. Figure 4.1 shows a time history of the third, fourth, fifth and sixth ROM modal
amplitudes (circles) compared to the projection of the full CFD simulation onto the third,
forth, fifth and sixth POD modes (solid lines). Mathematically, this figure compares as a
function of time t:

ai(t) vs. 〈qCFD, φi〉, i = 3, 4, 5, 6, (4.0.1)

where qCFD ≡
(

u, v, w, T, ρ
)T

is the high-fidelity CFD solution from which the ROM
basis was constructed. There is good agreement between the ROM and the full simulation
for the time interval considered. This provides one level of verification of the new code.
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(b) Coefficients 5 and 6

Figure 4.1. A comparison of the ROM coefficients with
the projections of the snapshots onto the POD basis.

To further verify the implementation, as well as examine further the accuracy of the
ROM, the ROM solution for the u-velocity is visualized and compared to the high-fidelity
solution for the u-velocity at times t = 1.5 × 10−3 and 9.20 × 10−3 (Figures 4.2 and 4.3
respectively). The reader can observe that there is a good qualitative agreement between
the high-fidelity solution and the ROM solution at both times. Some spurious features are
observed in the solution at the later time (Figure 4.3), but this is expected for a ROM with
as few modes as used here (M = 10). This provides further verification of the new code.

It is worthwhile to report that an instability in the ROM was observed when the ROM
was constructed using dimensional variables, likely due to bad scaling. These results are
omitted from this report.
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Figure 4.2. u-velocity at time t = 1.5 × 10−3 seconds
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Figure 4.3. u-velocity at time t = 9.2 × 10−3 seconds
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Chapter 5

Conclusions and Future Work

The implementation of the L2 ROM for the Navier-Stokes equations produces good re-
sults. However, there is still more work to be done to fully test this implementation. After
that, the next step would be to construct a ROM using the energy inner product.

Performing the Galerkin projection with an energy inner product will produce a stable
ROM [5]. This requires writing the Navier-Stokes equations in a slightly different form:

a,t + a,juj +
1

2
auj,j = 0, (5.0.1)

a2ui,t + a2ui,juj +
2

γ

(

a2cc,i − ac2a,i,
)

− τij,j = 0, i = 1, 2, 3 (5.0.2)

and

2a2c

γ(γ − 1)

(

c,t + ujc,j +
γ − 1

2
uj,jc

)

−
2κ

γR

(

c,jc,j + c (c,j),j

)

− ui,jτij = 0, (5.0.3)

where a2 = ρ and c is the speed of sound.

The energy inner product is defined as

(

q(1),q(2)
)

E
=

∫

Ω

(

1

γ (γ − 1)
a(1)c(1)a(2)c(2) +

1

2
u

(1)
i u

(2)
i

)

dΩ. (5.0.4)
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